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SUMMARY

Numerical simulations of viscous flow problems with complex moving and/or deforming boundaries
commonly require the solution of the corresponding fluid equations of motion on unstructured dynamic
meshes. In this paper, a systematic investigation of the importance of the choice of the mesh configura-
tion for evaluating the viscous fluxes is performed when the semi-discrete Navier–Stokes equations are
time-integrated using the popular second-order implicit backward difference algorithm. The findings are
illustrated with the simulation of a laminar viscous flow problem around an oscillating airfoil. Copyright
© 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of unsteady viscous flow problems with complex moving and deform-
ing boundary conditions arises in many scientific and engineering applications, including, to
name only a few, blood flow simulations, airfoil oscillations in a separated flow, parachute
dynamics, fighter tail buffeting, gate sliding and a large class of free-surface problems. When
in such applications some of the fluid domain boundaries undergo a motion with a large
amplitude, it becomes necessary to solve the flow equations on a moving and possibly
deforming grid. Such a grid is often referred to in the computational aerodynamics literature
as a dynamic mesh.

Several approaches have been proposed in the past for solving computational fluid dynamics
problems on moving and deforming meshes, among which the two closely related arbitrary
Lagrangian–Eulerian (ALE) [1,2] and dynamic mesh [3] methods, the co-rotational approach
[4,5], and space–time formulations [6,7] are noted. All of these and other solution methods
have to compute the grid displacement and velocity fields, and address the issue of deciding
where to evaluate the fluxes when advancing the flow solution from time step tn to time step
tn+1: on the mesh configuration at tn, on that at tn+1, or on ‘phantom’ mesh configurations
between tn and tn+1? These issues can be partially addressed by noting that whichever method
is selected for solving the fluid equations on dynamic meshes, it is desirable that this method
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preserves the trivial solution of a uniform flow field (in the absence of other boundary
conditions, a uniform flow field is a solution of the Navier–Stokes equations). In [8,9], the
authors have shown that, except for space–time finite element discretization schemes, this
property is verified only when the numerical method chosen for solving the flow problem
with moving boundary conditions, and the algorithm constructed for updating the position
of the moving grid, satisfy a discrete geometric conservation law (DGCL) that is similar in
its principle to the GCL condition that was first pointed out in [10] for structured grids
and finite difference schemes. However, because any DGCL condition affects only the
convective fluxes, many authors who have discussed flow computations on moving grids
have addressed the correct time integration of the convective fluxes only [8,9,11–14]. Little
if any has been written about the time-accurate prediction of the diffusive fluxes on un-
structured dynamic meshes. Perhaps that, for simplicity, the moving viscous fluxes are often
computed on the readily available mesh configuration at time tn. Nevertheless, a mathemat-
ical analysis and justification would certainly improve the understanding and increase the
popularity of such a computational approach. The main objective of this paper is to fill
this gap in the literature, when finite element and/or finite volume ALE or dynamic meshes
formulations are chosen for solving the flow problem with moving and/or deform-
ing boundary conditions. For this purpose, the remainder of this paper is organized as
follows.

In Section 2, the ALE formulation of the Navier–Stokes equations for flow problems
with moving grids is summarized. The convective fluxes are semi-discretized by an unstruc-
tured finite volume method, and the diffusive ones by a piecewise linear finite element
approximation. In Section 3, the second-order time-accurate implicit backward difference
scheme for unsteady flow computations on fixed grids is considered, and a family of
extensions for unsteady flow computations on unstructured dynamics meshes are derived.
These extensions lead to a family of numerical algorithms that differ by the choice of the
mesh configurations on which the diffusive fluxes are computed while the flow solution is
advanced from time step tn to time step tn+1. In particular, it is shown that using for that
purpose the readily available mesh configuration at time step tn corresponds to a first-order
time-accurate strategy for evaluating the viscous fluxes on moving grids. In Section 4, the
family of algorithms is applied to the simulation of a two-dimensional transonic laminar
viscous flow around an oscillating airfoil. Based on the numerical results obtained for this
problem, conclusions are formulated in Section 5.

2. FORMULATION AND SEMI-DISCRETIZATION OF THE ALE NAVIER–STOKES
EQUATIONS

Let V(t)¦Rn (n=2, 3) be the flow domain of interest, and G(t) be its moving and/or
deforming boundary (Figure 1). A mapping function between V(t), where time is denoted
by t and a grid point’s co-ordinates by x, and a reference configuration V(0), where time is
denoted by t and a grid point’s co-ordinates by j, is introduced as follows:

x=x(j, t); t=t. (1)

The ALE non-dimensional conservative form of the Navier–Stokes equations describing
viscous flows on dynamic meshes can be written as [2,8,9]
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+J9x ·Fc(W, x; )=J9x ·R(W)

Fc(W, x; )=F(W)−x; W

, (2)

where a dot superscript designates a time derivative, J=det(dx/dj), x; =(x/(t �j, W is the
fluid state vector, Fc denotes the ALE convective fluxes and R the diffusive fluxes.

For two-dimensional flows, W, F and R are given by
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Figure 1. A moving and deforming boundary necessitating a dynamic mesh.

Figure 2. A control volume in a two-dimensional unstructured mesh.
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where

E=re+
1
2

r6� 2,

p= (g−1)re,

s=96� +9t6� −2
3

9 ·6� Id,

6� = (61, 62)t,

g=
cp

c6
,

0a = (0, 0)t,

e� 1= (1, 0)t and e� 2= (0, 1)t

and r is the fluid density, p its pressure, e its specific internal energy, 6� = (61, 62) its velocity
vector, m its laminar viscosity, g its specific heat ratio, Re the Reynolds number, Pr the Prandtl
number, s the stress tensor, Id the identity matrix, and a t superscript designates the transpose
of a vector.

Equation (2) is semi-discretized on a triangulation (two-dimensional problems) or a tetrahe-
dral mesh (three-dimensional problems) from which one derives a dual mesh defined by
control volumes or cells (Figures 2 and 3).

First, Equation (2) is integrated over a reference cell Ci(0) of the j space&
Ci(0)

(JW

(t
)
j

dVj+
&

Ci(0)

9x ·Fc(W, x; )J dVj=
&

Ci(0)

9x ·R(W)J dVj.

Since the partial time derivative is evaluated at a constant j, it can be moved outside the
integral sign to obtain

d
dt

&
Ci(0)

WJ dVj+
&

Ci(0)

9x ·Fc(W, x; )J dVj=
&

Ci(0)

9x ·R(W)J dVj. (3)
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Figure 3. A control volume in a three-dimensional unstructured mesh.

Figure 4. Evolution in time of a cell facet in a three-dimensional mesh.
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Next, we switch from the j reference space to the x space at time t and transform Equation
(3) into

d
dt

&
Ci(t)

W dVx+
&

Ci(t)

9x ·Fc(W, x; ) dVj=
&

Ci(t)

9x ·R(W) dVx. (4)

Finally, the convective and diffusive fluxes are integrated by parts, which leads to

d
dt

&
Ci(t)

W dVx+
&
(Ci(t)

Fc(W, x; )n� ds=
&
(Ci(t)

R(W) ·n� ds, (5)

where n� denotes the normal to the cell boundary (Ci(t).
Throughout this paper, the ALE convective fluxes are resolved by a suitable Riemann solver

[13,15–17], and approximate the diffusive terms by piecewise linear finite elements. The
resulting semi-discrete version of Equation (5) is

d
dt

(AiWi)+Fi(W, X, X: )=Ri(W, X), (6)

where Ai=	Ci(t)
dVx, Wi denotes the average value of W over the cell Ci(t), Fi and Ri denote

respectively, the semi-discrete ALE convective and diffusive fluxes, W is the vector formed by
the collection of Wi, and X is the vector of time-dependent grid point positions. Various
expressions of the flux approximation Fi(W, X, X: ) can be found in [13,15–17]. On the other
hand, the piecewise linear finite element approximation of the diffusive fluxes leads to

Ri(W, X)= %
T,i�T

R(T) ·n� i,T, (7)

where T is a triangle in two-dimensional problems and a tetrahedron in three-dimensional
ones,

Figure 5. Description of a tetrahedron T.
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n� i,T=
&
(Ci(x)ST

n� ds (8)

and R(T)=R(W)�T is the constant value of R(W) over T obtained by computing the mean
value of 6� over T as 6� (T)=1

3 �k,k�T 6� k in two-dimensional problems, and 6� (T)=1
4 �k,k�T 6� k in

three-dimensional ones. This paper does not discuss the specific problem of computing or
updating the grid point position and velocity fields, as this topic has already been discussed in
several papers, including [2,3,6]. However, it is noted that all developments and conclusions
presented in this paper are independent of the computational method employed for solving the
fluid mesh motion problem.

3. IMPLICIT TIME-INTEGRATION OF THE SEMI-DISCRETE ALE
NAVIER–STOKES EQUATIONS

Let tn and Dtn= tn+1− tn denote the nth time station and the (n+1)th time step respectively.
Integrating Equation (6) between tn and tn+1 leads to& tn+1

t n

d
dt

(AiWi) dt+
& tn+1

t n

Fi(W, X, X: ) dt=
& tn+1

t n

Ri(W,X) dt. (9)

The proper evaluation of the integrals 	tn+1

t n Fi(W, X, X: ) dt and 	tn+1

t n Ri(W, X) dt raises the
question of where to evaluate the convective and diffusive fluxes: on the mesh configuration at
(tn, Xn), on that at (tn+1, Xn+1), in between these two configurations, outside these two
configurations, or on a combination of all of these configurations? For small time steps, it may
not matter on which mesh configuration the fluxes are computed, if the differences between
these configurations are insignificant. However, for the rather large time steps that are often
employed with implicit time integration schemes, the method of evaluation of the integrals
	tn+1

t n Fi(X, X, X: ) dt and 	tn+1

t n Ri(W, X) dt can have a dramatic effect on the accuracy of the
flow solution.

For inviscid flows, the proper evaluation of the convective fluxes on unstructured dynamic
meshes has been addressed in [8,9,13] for first-order time integration algorithms, and more
recently in [14] for second-order time-accurate schemes. Here, the proper evaluation on moving
grids of the diffusive fluxes is examined. To keep this paper as short as possible, the authors
consider for this purpose only a second-order implicit time integration algorithm. However,
they first summarize the conclusions presented in [14] for the systematic investigation of the
importance of the choice of the mesh configurations for evaluating the semi-discrete convective
fluxes on moving grids. These conclusions motivate and justify the approach adopted in this
paper for computing the semi-discrete diffusive fluxes on dynamic meshes.

3.1. The generalized second-order backward difference implicit scheme

A second-order time-accurate implicit algorithm that is popular in CFD is the second-order
backward difference scheme (2nd BDF). On fixed grids, this algorithm can be written as

an+1AiWi
n+1+anAiWi

n+an−1AiWi
n−1+Dtn(Fi(W n+1)−Ri(W n+1))=0, (10)

where the coefficients an−1, an and an+1 are time-dependent if a variable time step Dtn is
employed, and are given by

an+1=
1+2t

1+t
, an= −1−t, an−1=

t2

1+t
, t=

Dtn

Dtn−1 .
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Here, the authors propose to generalize the 2nd BDF scheme to CFD on dynamic meshes
as follows

an+1Ai(Xn+1)Wi
n+1+anAi(Xn)Wi

n+an−1Ai(Xn−1)Wi
n−1

+DtnCi(W n+1, Xn− l, . . . , Xn, . . . , Xn+m, X: n− j, . . . , X: n, . . . , X: n+k)=0, (11)

where j, k, l and m are positive integers, Xn+k=X(tn+k), and the numerical flux function Ci

is given by

Ci=%
s

{ws
cFi(W n+1, Xns

c

, X: ns
c

)−ws
dRi(W n+1, Xns

d

)}, (12)

where ws
c and ws

d are real coefficients satisfying �s ws
c=1 and �s ws

d=1, and Xns
c

and Xns
d

denote different linear combinations of the mesh configurations {Xn− l, . . . , Xn, . . . , Xn+m}.
This generalization is characterized by the following two properties:

1. If one sets w1
c =1, ws

c=0 for s"1, and w1
d=1, ws

d=0 for s"1, one recovers the basic 2nd
BDF scheme for CFD computations on fixed grids. Such a property is desirable for the
extension to moving grids of any algorithm originally designed for CFD computations on
fixed grids. In particular, this is the reason why the numerical flux function is not
constructed as Ci=�s {ws

cFi(W
ns

c

, Xns
c

, X: ns
c

)−ws
dRi(W

ns
d

, Xns
d

)}. Indeed, in the latter case
one does not recover the basic 2nd BDF scheme when the mesh is steady, and therefore,
one does not take advantage of the well-established properties of this algorithm.

2. For inviscid flows (Ri=0), the proposed generalized time integrator (Equations (11) and
(12)) equipped with suitable coefficients wc

s and mesh configurations (Xns
c

, X: ns
c

), and with
ws

d=0, was shown in [14] to achieve second-order time accuracy for flow problems on
moving grids. Hence, the present objective is to extend the generalized 2nd BDF scheme to
viscous flow problems on moving grids by augmenting the numerical flux function Ci with
suitable coefficients ws

d and mesh configurations Xns
d

. By ‘suitable’, it is meant coefficients
and mesh configurations that allow the proposed time integrator [(11) and (12)] to achieve
in practice the best possible time accuracy when applied to the solution of unsteady viscous
flow problems on moving grids.

Note that the numerical flux function (12) can be interpreted as the evaluation of the
integrals 	tn+1

t n Fi(W n+1, X(t), X: (t), X: (t)) dt and 	tn+1

t n Ri(W n+1, X(t)) dt quadrature rule. The
superscript n+1 of the fluid state 6ector W is a consequence of the choice of the 2nd BDF
implicit scheme as the underlying time integrator. The real numbers ws

c and ws
d are the weighting

coefficients of this quadrature rule. The quadrature points Xns
c

, Xns
d

and X: ns
c

are constructed as
linear combinations of the mesh configurations {Xn− l, . . . , Xn, . . . , Xn+m} and their veloc-
ities {X: n− j, . . . , X: n, . . . , X: n+k}. It follows that the proposed time integration algorithm [(11)
and (12)] differs from the basic second-order backward difference scheme (10) in the formula-
tion of the numerical flux function Ci. For flow computations on dynamic meshes, Ci involves
a set of mesh configurations and weighting parameters. These additional unknowns should be
determined so that for CFD computations on moving grids, the generalized algorithm [(11)
and (12)] retains, as much as possible, the second-order time accuracy that characterizes the
2nd BDF algorithm on fixed grids.

3.2. Time discretization of the semi-discrete con6ecti6e fluxes

It can be shown [18] that a sufficient condition for the time integrator [(11) and (12)] to be
mathematically consistent—i.e. to be at least first-order time-accurate on moving grids—is to
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predict exactly the state of a uniform flow. This sufficient condition, which was formulated
in [14] as a geometric conservation law (GCL), can be used to determine the convective
coefficients ws

c and the mesh configurations (Xns
c

, X: ns
c

). For example, it was shown in [14]
that for two-dimensional inviscid problems, the time-integrator [(11) and (12)] equipped
with the following two ws

c coefficients and two mesh configurations (Xns
c

, X: ns
c

) satisfies the
GCL and achieves in practice second-order time accuracy

Í
Ã

Ã

Ã

Ã

Á

Ä

w1
c =an+1;

Xn1
c

=
Xn+1+Xn

2
;

X: n1
c

=
Xn+1−Xn

Dtn ;

w2
c = −

an−1

t

Xn2
c

=
Xn+Xn−1

2

X: n2
c

=
Xn−Xn−1

Dtn−1

. (13)

It was also shown in [14] that for three-dimensional inviscid problems, the proposed time
integrator [(11) and (12)] equipped with the following four ws

c coefficients and four mesh
configurations (Xns

c

, X: ns
c

) satisfies the GCL and achieves in practice second-order time accu-
racy

Í
Ã

Ã

Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

w1
c =

an+1

2
; w2

c =
an+1

2
; w3

c = −
an−1

2t
; w4

c = −
an−1

2t

d1=
1
2
�

1−
1


3

�
; d2=

1
2
�

1+
1


3

�
Xn1

c

=d1Xn+1+d2Xn; Xn2
c

=d2Xn+1+d1Xn

Xn3
c

=d1X
n+d2X

n−1; Xn4
c

=d2X
n+d1X

n−1

X: n1
c

=X: n2
c

=
Xn+1−Xn

Dtn ; X: n3
c

=X: n4
c

=
Xn−Xn−1

Dtn−1

. (14)

Hence, for inviscid flow problems, the Ci function does not have the same expression in
the two-dimensional and three-dimensional cases (see [8,9,14] for further details). For two-
dimensional inviscid flow problems, the semi-discrete convective fluxes are time integrated
on two mesh configurations: the first one is at the midpoint between Xn−1 and Xn, and the
second one is at the midpoint between Xn and Xn+1. For three-dimensional inviscid flow
problems, the semi-discrete convective fluxes are time-integrated on four different mesh
configurations, none of which is intuitive.

Finally, it is pointed out that, using the inviscid aeroelastic analysis of the AGARD
445.6 wing as an example, the authors have shown in [14] that (a) for a specified time
accuracy, the time integrator [(11) and (12)] equipped with the coefficients and mesh config-
urations given in Equation (14) can use a time step that is ten times larger than the
maximum time step that can be afforded by the same time integrator when the convective
fluxes are simply computed on the mesh configuration at time tn, and (b) it is six times
faster CPU-wise when equipped with the coefficients and mesh configurations specified in
Equation (14).
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3.3. Time discretization of the semi-discrete diffusi6e fluxes

While it has been successfully exploited for determining the convective coefficients ws
c and

the corresponding mesh configurations Xns
c

, the principle of conservation of the state of a
uniform flow W * cannot be used as a guideline for determining the viscous coefficients ws

d and
the corresponding mesh configurations Xns

d

. Indeed, setting W n+1=W * in either Equations
(9) or (12) annihilates the contributions of the viscous fluxes, and therefore does not shed any
light on where to evaluate these fluxes on dynamic meshes. Here, it is shown that this specific
issue can be addressed by performing a Taylor series expansion of 	tn+1

t n Ri(W n+1, X) dt and
identifying its leading terms with Dtn �s ws

dRi(W n+1, Xns
d

), which completes the construction of
the time integrator [(11) and (12)]. It turns out that the results are identical for both the two-
and three-dimensional cases; for this reason only the three-dimensional case is discussed.

For three-dimensional problems, the semi-discrete diffusive fluxes (7) can be written as

Ri(W, X)= %
j�{i,V(i)}

%
T�Supp(fj)

1
Vol(T)

Gj(W, n� j,T, n� i,T), (15)

where V(i ) is the set of the neighbors of vertex i, fj is the Galerkin linear shape function
associated with vertex j, Supp(fj)={T/fj"0 on T}, Vol(T) denotes the volume of tetrahe-
dron T, Gj is a five-component vector given by

Gj(W, n� j,T, n� i,T)= −
m

Re
Ã
Á

Ä

G1j(W, n� j,T, n� i,T)
G2j(W, n� j,T, n� i,T)
G3j(W, n� j,T, n� i,T)

Ã
Â

Å
·n� i,T

and G1j, G2j and G3j are also five-component vectors that can be written as

Ã
Á

Ä

G1j
t (W, n� j,T, n� i,T)

G2j
t (W, n� j,T, n� i,T)

G3j
t (W, n� j,T, n� k,T)

Ã
Â

Å
=
�

0a , r� (Wj, n� j,T, e� 1),

r� (Wj, n� j,T, e� 2), r� (Wj, n� j,T, e� e), r� (Wj, n� j,T, n� (T))+
g

Pr
ejn� j,T

�
.

In the above expression, 0a = (0, 0, 0)t, e� 1= (1, 0, 0)t, e� 2= (0, 1, 0)t, e� 3= (0, 0, 1)t, and r� is a
three-component vector defined by

r� (Wj, n� j,T, bb )=�
M(6� j)�Mt(n� j,T)+Mt(6� j)�M(n� j,T)−

2
3
6� j ·n� j,TId

n
·bb ,

where bb �R3 and the following notation is used for c� �R3 and A, B�R3×R3

M(c� )=Ã
Á

Ä

c1

c2

c3

c1

c2

c3

c1

c2

c3

Ã
Â

Å
; (A�B)ij=AijBij ; i, j=1, . . . , 3.

From Equation (15) it follows that the variation in time of each of the quantities n� i,T, n� j,T
and Vol(T) must be determined before 	tn+1

t n Ri(W n+1, X) dt can be evaluated. This requires
describing first the evolution within the time interval [tn, tn+1] of the position of a fluid grid
point Xi. Among the many possible parametrizations of Xi(t), the following linear evolution is
selected
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Xi(t)=d(t)Xi
n+1+ (1−d(t))Xi

n

05d(t)=
t− tn

Dt
51 (16)

because of its simplicity, and because the most popular methods for updating a dynamic mesh
are linear two-step algorithms that involve the mesh positions at time steps tn and tn+1.
Furthermore, it is noted that choosing another parametrization of Xi(t) than that described in
Equation (16) does not affect the fundamental ideas described in this paper.

For the linear transformation described in Equation (16), the evolution in time of a segment
of a cell boundary is graphically depicted in Figure 4, and the variations of n� j,T, n� i,T and Vol(T)
as functions of d(t) and Dt are given by

n� i,T=
&
(Ci(X)ST

n� ds

=
1
6

(Xk−Xj)� (Xl−Xj)

=
1
6

[(d(t)Dt(X: k−X: j)+Xk
n−Xj

n)� (d(t)Dt(X: l−X: j)+Xl
n−Xj

n)],

Figure 6. Partial view of the C-mesh around the NACA0015 airfoil.
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Figure 7. Evolution of the lift coefficient for Dt=T/25 and Re=103.

n� j,T=
1
6

[(d(t)Dt(X: l−X: i)+Xl
n−Xi

n)� (d(t)Dt(X: k−X: i)+Xk
n−Xi

n)],

Vol(T)=
1
6

((Xk−Xj)� (Xl−Xj)) ·(Xj−Xi)

=
1
6

[(d(t)Dt(X: k−X: j)+Xk
n−Xj

n)� (d(t)Dt(X: l−X: j)+Xl
n−Xj

n)]

· (d(t)Dt(X: j−X: i)+Xj
n−Xi

n),

where

X: =Xn+1−Xn

Dt
(17)

and Xi, Xj, Xk and Xl are the four vertices defining tetrahedron T and positioned as shown in
Figure 5.

From Equation (15) and the above expressions of n� i,T, n� j,T and Vol(T), it follows that& tn+1

t n

Ri(W n+1, X) dt=Dtn & 1

0

� %
4

k=0

akDtnk
d(t)k/ %

3

k=0

bkDtnk
d(t)k� dd(t), (18)

where ak is a function of (Xn, Xn+1, W n+1), and bk a function of (Xn, Xn+1).
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Figure 8. Evolution of the lift coefficient for Dt=T/50 and Re=103.

Figure 9. Evolution of the viscous contribution to the lift coefficient for Dt=T/25 and Re=103.
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Now, expanding the integrand of integral (18) as a Taylor series in Dtn gives& tn+1

t n

Ri(W n+1, X) dt=Dtn & 1

0

(c0+c1Dtnd(t)+c2Dtn2
d(t)2+ · · ·) dd(t), (19)

where every coefficient ck is yet another function of (Xn, Xn+1, W n+1). Depending on the
quadrature rule chosen for evaluating the above integral, the following time accuracy results
can be established:

(a) If the integration of Equation (19) is performed at d(t)=0, only constant polynomials in
d(t) are integrated exactly, and one obtains& tn+1

t n

Ri(W n+1, X) dt=DtnRi(W n+1, Xn)+O(Dtn2
). (20)

(b) If the midpoint rule is used for evaluating Equation (19), the constant and linear terms in
d(t) are integrated exactly, and therefore& tn+1

t n

Ri(W n+1, X) dt=DtnRi(W n+1, Xn+1/2)+O(Dtn3
); Xn+1/2=

Xn+1+Xn

2
.

(21)

(c) On the other hand, if the two-point integration rule at d(t)=1
2�1/(2
3) is used, all

constant, linear, and quadratic monomials in d(t) are integrated exactly, and one obtains& tn+1

t n

Ri(W n+1, X) dt=
Dtn

2
[Ri(W n+1, Xm1)+Ri(W n+1, Xm2)]+O(Dtn5

) (22)

m1=n+
1
2
−

1

2
3
,

m2=n+
1
2
+

1

2
3
,

Xn+b=bXn+1+ (1−b)Xn.

Hence, if the objectives are to time integrate the semi-discrete Navier–Stokes equations (6)
using the generalized 2nd BDF algorithm [(11) and (12)], and to retain, as much as possible on
moving grids, the time accuracy of the 2nd BDF scheme on fixed grids, the theoretical analysis
presented above suggests that as far as the semi-discrete viscous fluxes are concerned, the
proposed time integrator [(11) and (12)] should be constructed using the following single
coefficient w1

d and single mesh configuration Xn1
d

w1
d=

1
2

; Xn1
d

=
Xn+1+Xn

2
, (23)

i.e. the semi-discrete diffusive fluxes should be integrated on the midpoint configuration
between Xn and Xn+1. Note that this result is not as intuitive as it may seem, because as
shown in Equation (14), it does not apply for the semi-discrete convective fluxes.

The truncation error analysis performed herein can be repeated for a first-order time-accu-
rate version of the generalized implicit algorithm [(11) and (12)] (e.g. see [8,9]), as well as for
higher-order versions. Such an analysis leads to the following guidelines. When the unsteady
Navier–Stokes equations are semi-discretized on a moving grid, and a given time integration
scheme S is generalized to advance the flow solution on this moving grid, the integral
	tn+1

t n Ri(W n+1, X) dt should be computed using
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(a) the configuration (tn, Xn) if S is first-order time-accurate on fixed grids,
(b) the midpoint configuration if S is second-order time-accurate,
(c) the two-point quadrature rule (22) if S is third- or fourth-order time-accurate,

in order to ensure that the truncation error associated with the mesh motion is of the same
order as the truncation error that characterizes S on fixed grids.

4. APPLICATIONS

So far it has been concluded that if a given flow solver is only first-order time-accurate on
fixed grids, the moving diffusive fluxes that appear in its extension to dynamic meshes can be
simply computed on the (tn, Xn) mesh configuration. In that case, the overall solution of the
viscous flow problem with moving boundary conditions can be expected to remain first-order
time-accurate if the moving convective fluxes are properly discretized (i.e. if the time integrator
[(11) and (12)] is equipped with the proper ws

c coefficients and mesh configurations (Xns
c

, X: ns
c

)
for evaluating the convective fluxes on moving grids). However, if the basic flow solver is
second- or higher-order time-accurate on fixed grids, it becomes interesting to determine
whether on dynamic meshes, the moving diffusive fluxes can still be evaluated on the (tn, Xn)
mesh configuration without reducing in practice the order of time accuracy of the flow
solution, or whether these diffusive fluxes should be computed by the second- or higher-order
computational strategies described in Section 3.3. In order to address this issue, the authors
consider the simulation of the laminar viscous flow past a NACA0015 airfoil forced into the
harmonic pitching motion

a(t)=a0+amax sin vt,

where a(t), a0 and amax denote respectively, the instantaneous angle of attack, the initial angle
of attack and the maximum perturbation around this initial angle of attack, and v denotes the
circular frequency of oscillation. Here, these parameters are set to

a0=0°, amax=10°, v=95 rad s−1

and the free-stream Mach number is set to M�=0.85. Note that the frequency associated with
v=95 rad s−1 is f=15 Hz, and that this frequency corresponds to the first torsional mode of
a realistic aircraft wing.

An appropriate Reynolds number for this aerodynamic application is in the range of
millions. Usually, for such a high Reynolds number, a numerical simulation calls for a
turbulence model. However, in order not to influence the results of the present investigation by
the specifics of a given turbulence model, the numerical simulations are restricted to a lower
Reynolds number, Re=103, and solve directly the governing Navier–Stokes equations on a
moving grid.

The computational domain around the NACA0015 airfoil is descritized using a C-mesh with
a unit chord LC=1 and 57010 vertices (see Figure 6). Within the boundary layer, the distance
between two grid points is typically d=8.7×10−4. Hence, the numerical Reynolds number
associated with this C-mesh is

Renum=
M�×LC

d
=

0.85×1.0
7.5×10−4=1.133×103\Re,
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Figure 10. Evolution of the viscous contribution to the lift coefficient for Dt=T/50 and Re=103.

Figure 11. Evolution of the drag coefficient for Dt=T/25 and Re=103.
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which suggests that this C-mesh is capable of resolving both the large and small structures of
the flow along with all scales in between.

For all numerical simulations discussed herein, a two-dimensional unstructured flow solver
is employed that can be described as follows. It incorporates an ALE formulation to allow the
grid points to displace in a Lagrangian fashion, or be held fixed in an Eulerian manner, or be
moved in some specified way to give a continuous and automatic rezoning capability,
depending on the needs of the physical problem to be solved. At each time step, the position
of the fluid dynamic mesh is updated using the spring analogy method introduced in [3] and
refined in [19]. The flow solver here combines the Roe upwinding scheme [20] for the
computation of the convective fluxes with a Galerkin centered scheme for the approximation
of the viscous terms. Second-order spatial accuracy is achieved through the use of a piecewise
linear interpolation method [13,15–17] that follows the principle of the monotonic upwind
scheme for conservative laws (MUSCL) procedure [21]. Time integration is carried out by the
generalized 2nd BDF implicit time integrator [(11) and (12)], where the ws

c coefficients and the
mesh configurations (Xns

c

, X: ns
c

) are set as in Equation (13). The authors remind the reader that
for inviscid flows, the time integrator [(11) and (12)] equipped with the parameters given in (13)
achieves second-order time accuracy on moving grids [14]. For the purpose of the present
investigation, the generalized 2nd BDF time integrator is also equipped with two different
choices for the viscous coefficients ws

d and mesh configurations (Xns
d

, X: ns
d

)

1. w1
d=1, Xn1

d

=Xn, which corresponds to evaluating the moving diffusive fluxes on the
(tn, Xn) mesh configuration.

2. w1
d=1, Xn1

d

=Xn+1/2= (Xn+1+Xn)/2, which corresponds to evaluating the moving diffu-
sive fluxes on the midpoint mesh configuration.

Two series of numerical simulations are performed corresponding to the two different
strategies specified above for computing the moving diffusive fluxes. In each case, twice the
computations are performed: first with a time step fixed to Dt=T/25, then with a twice
smaller time step Dt=T/50. Here, T denotes the period of oscillations of the airfoil (T=1/f=
1/15=0.0667 s). Note that both of these time steps are typical of implicit computations. The
authors also compute an additional solution using a much smaller time step Dt=T/250 and
the second-order scheme for the evaluation of the moving diffusive fluxes. This additional
solution is labeled the ‘reference’ solution because of its small computational time step.

The lift and drag time histories predicted by the numerical simulations are reported in
Figures 7–14. The focus on lift and drag is motivated by the interest in computational
aeroelasticity. These figures show that

1. the numerical solutions obtained with Dt=T/50 are ‘converged’ in time.
2. when the generalized 2nd BDF time integrator is equipped with the two coefficients ws

c and
two mesh configurations (Xns

c

, X: ns
c

) given in Equation (13) for evaluating the moving
convective fluxes, the same accuracy is achieved for the lift and drag coefficients whether
the moving diffusive fluxes are computed on the (tn, Xn) mesh configuration, or on the
midpoint mesh configuration (tn+1/2, Xn+1/2).

3. on the other hand, if one focuses exclusively on the contribution of the viscous terms to the
lift coefficient, one can observe in Figures 9 and 10 that computing the moving viscous
fluxes on the midpoint configuration reduces by 50% the amplitude error obtained when
these fluxes are computed on the current mesh configuration, and does not generate any
phase error.
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Figure 12. Evolution of the drag coefficient for Dt=T/50 and Re=103.

Figure 13. Evolution of the viscous contribution to the drag coefficient for Dt=T/25 and Re=103.
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4. from the above two observations, it follows that the second-order computational strategy
(21) for evaluating the unsteady viscous fluxes on moving grids delivers an intrinsically
better accuracy than its first-order counterpart, where the moving viscous fluxes are
evaluated on the current mesh configuration. However, for the application presented
herein, the contributions of the viscous terms to the lift and drag coefficients are not
sufficiently important—their contribution to the lift coefficient is 40 times smaller than
that of the pressure—to impact the accuracy of the total lift and drag solutions.

In order to support the last of the above three conclusions, the authors consider another
flow problem around a NACA0012 airfoil forced into the same harmonic pitching motion as
in the previous example, but where the Reynolds number is Re=5. Clearly, such a problem is
more of an academic nature than the previous one. However, it does illustrate a situation
where the viscous terms provide more important contributions to lift and drag than in the
previous example. The computational domain around this airfoil is descretized using an
unstructured mesh with a unit chord LC=1 and 3114 vertices only. The distance between two
grid points in the boundary layer is typically d=2.6×10−2. The numerical Reynolds number
associated with this mesh is

Renum=
M�×LC

d
=

0.85×1.0
2.6×10−2=32.692\Re,

which implies that this mesh is suitable for laminar viscous flow computations at a Reynolds
number Re=5. Two simulations are performed using first Dt=T/25, and then Dt=T/250,

Figure 14. Evolution of the viscous contribution to the drag coefficient for Dt=T/50 and Re=103.
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Figure 15. Evolution of the lift coefficient for Dt=T/25 and Re=5.

and the predicted lift and drag time histories are reported in Figures 15 and 16. For the same
reason as before, the authors refer to the flow solution produced by the second simulation as
the ‘reference’ solution.

For this low Reynolds number application, Figure 15 shows that, for the fixed time step
Dt=T/25, the second-order strategy (21) for computing the moving diffusive fluxes reduces
the amplitude error by 33% and the phase error obtained for the total lift by 50% when these
fluxes are evaluated by the first-order computational strategy. This observation highlights the
importance of the choice of the mesh configuration for time integrating the semi-discrete
viscous fluxes, when these fluxes contribute significantly to the sought after flow solution.

5. CONCLUSIONS

Many computational fluid dynamics unsteady applications require the discretization of the
Navier–Stokes equations on unstructured dynamic meshes. Advancing the flow solution
between time tn and time tn+1 on these grids raises the question of where to evaluate the
convective and diffusive fluxes: on the mesh configuration at (tn, Xn), on that at (tn+1, Xn+1),
in between these two configurations, outside these two configurations, or on combinations of
these and other configurations? For each numerical scheme designed for the solution of
unsteady flow problems on fixed grids, a discrete geometric conservation law (DGCL) can be
derived to ensure that the extension of this scheme to moving grids preserves the state of a
uniform flow. Enforcing the DGCL can be used as a guideline for answering the restriction of
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Figure 16. Evolution of the drag coefficient for Dt=T/25 and Re=5.

the above question to the convective fluxes. For example, the DGCL associated with a
three-dimensional flow solver based on the finite volume method and the second-order implicit
backward difference formula is satisfied when the integration of the convective fluxes between
tn and tn+1 is evaluated by a four-point quadrature rule recalled in this paper. This four-point
rule involves four different mesh configurations and was shown to preserve the second-order
accuracy of the implicit backward difference formula on dynamic meshes. The DGCL cannot
be used as a guideline for evaluating the diffusive fluxes on dynamic meshes because these
fluxes vanish for a uniform flow. On the other hand, this paper has shown that a local
truncation error analysis can be used as a guideline for addressing the issue of where to
evaluate the diffusive fluxes when time integrating between tn and tn+1 the semi-discrete
Navier–Stokes equations. More specifically, it has been shown that the popular strategy
consisting of computing these fluxes on the current mesh configuration (tn, Xn) is a first-order
computational strategy, while computing these fluxes on the midpoint configuration
(tn+1/2, Xn+1/2) is a second-order one. In that sense, the extension to dynamic meshes of a
three-dimensional flow solver based on the finite volume method and the second-order implicit
backward difference formula calls for the evaluation of the moving convective fluxes by a
four-point quadrature rule involving four distinct mesh configurations, and the evaluation of
the moving diffusive fluxes by a one-point rule involving the midpoint configuration. Sample
aerodynamic applications seem to confirm that evaluating the moving diffusive fluxes on the
midpoint configuration is an intrinsically more time-accurate procedure than evaluating these
fluxes on the current mesh configuration. However, practice also shows that when the viscous
effects are not sufficiently important, computing the moving diffusive fluxes on the current
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configuration does not reduce the overall time accuracy of the sought after flow solution, as
long as the moving convective fluxes are properly evaluated, i.e. by a procedure that obeys the
governing DGCL.
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12. H. Zhang, M. Reggio, J.Y. Trépanier and R. Camarero, ‘Discrete form of the GCL for moving meshes and its
implementation in CFD schemes’, Comput. Fluids, 22, 9–23 (1992).

13. B.N. Konga and H. Guillard, ‘Godunov type method on non-structured meshes for three-dimensional moving
boundary problems’, Comp. Methods Appl. Mech. Eng., 113, 183–204 (1994).

14. B. Koobus and C. Farhat, ‘Second-order time-accurate and geometrically conservative implicit schemes for flow
computations on unstructured dynamic meshes’, Comput. Methods Appl. Mech. Eng. (1999) in press. Also published
as AIAA Paper 98-0113, 56th Aerospace Sciences Meeting and Exhibit, Reno, NA, January 12–15, 1998.

15. L. Fezoui and B. Stoufflet, ‘A class of implicit upwind schemes for Euler simulations with unstructured meshes’,
J. Comput. Phys., 84, 174–206 (1989).

16. C. Farhat, L. Fezoui and S. Lantéri, ‘Two-dimensional viscous flow computations on the connection machine:
unstructured meshes, upwind schemes, and massively parallel computations’, Comput. Methods Appl. Mech. Eng.,
102, 61–88 (1993).

17. C. Farhat and S. Lantéri, ‘Simulation of compressible viscous flows on a variety of MPPs: computational algorithms
for unstructured dynamic meshes and performance results’, Comput. Methods Appl. Mech. Eng., 119, 35–60 (1994).

18. H. Guillard and C. Farhat, ‘On the significance of the geometric conservation law for flow computations on moving
meshes’, AIAA Paper 99-0793, 37th Aerospace Sciences Meeting, Reno, NV, January 11–14, 1999.

19. C. Farhat, C. Degand, B. Koobus and M. Lesoinne, ‘Torsional springs for two-dimensional dynamic unstructured
fluid meshes’, Comput. Methods Appl. Mech. Eng., 163, 231–245 (1998). Also published as AIAA Paper 98-2070,
S9th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Long Beach, CA,
April 20–23, 1998.

20. P.L. Roe, ‘Approximate Riemann solvers, parameter vectors and difference schemes’, J. Comput. Phys., 43, 357–371
(1981).

21. B. Van Leer, ‘Towards the ultimate conservative difference scheme. V: A second-order sequel to Goudonov’s
method’, J. Comput. Phys., 32, 361–370 (1979).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 975–996 (1999)


